Neutrino beam driven instability of magnetosonic waves in the presence of oblique magnetic field and ion-neutral collisional effect in plasmas

Author:

Aftab HORCID,Hussain SORCID,Mahmood SORCID,Haseeb M,Hasnain H

Abstract

Abstract The neutrino beam driven instability of fast and slow magnetosonic waves with oblique applied magnetic field in multi-component ion, electron and neutrino beam plasma is studied. The dissipation effects of ion-neutral collisions are also included in the model. The neutrino and electron interactions through electro-weak force are included. It is found that the dissipation of ion collisions has significant effect on the phase velocity of the wave propagation and growth rate of the neutrino beam driven instability. The analytical expression of the growth rate of the fast and slow magnetosonic waves instability is found under the weak neutrino beam approximation and in the absence of ions and neutrals (atoms) collision effect. The numerical illustration of growth rates of the fast and slow magnetosonic waves are also presented with variations of magnetic field angle, neutrino beam energy, neutrino beam density, magnetic field intensity. It is found that the growth rate of the fast magnetosonic wave is maximum in case of the perpendicular directed magnetic field to the direction of wave propagation, while growth rate of slow magnetosonic wave is minimum in that case. It is also noticed that growth rate of fast magnetosonic wave comes out to be larger (of the order tens) than the slow magnetosonic wave case, which is quite different from earlier published results of Type II core-collapse supernova.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3