Abstract
Abstract
Perovskite solar cells (PSCs) are famous for their potential to produce efficient, flexible, and low-cost solar energy. This study explores the possibility of eco-friendly, lead-free, inorganic solar cells using Cs2PtI6 as the light-absorbing layer and NiO as the hole transport layer (HTL). It carefully optimizes various factors, including the thickness, doping concentration, defect density, and the effects of radiative recombination of the absorber layer, along with different hole and electron transport layers. The study also examines interfacial defects and resistances within the device. The density of defects at the interface between the HTL and the absorber layer is a crucial factor influencing the device’s performance. Additionally, the study evaluates different metal back contacts, changes in temperature, light intensity, and the spectrum of light. The optimized structure (FTO/ZnO/Cs2PtI6/NiO/Au) achieves an open circuit voltage (VOC) of 1.34 V, a short-circuit current (JSC) of 32.34 mAcm−2, a fill factor (FF) of 75.70%, and an excellent power conversion efficiency (PCE) of 32.70%, showing great promise in solar cell technology.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献