Toward improved PVDF-BaTiO3composite dielectrics: mechanical activation of the filler versus filler content

Author:

Djoković VladimirORCID,Dudić Duško,Dojčilović Radovan,Marinković Filip S,Pavlović Vera P,Pavlović Vladimir B,Vlahovic Branislav

Abstract

AbstractBarium titanate (BT) perovskite particles were surface modified by means of mechanical treatment and used as inorganic component in polyvinylidene fluoride (PVDF) based composites. The changes in electrical properties of the composite films with increasing in filler content were followed by dielectric spectroscopy, breakdown strength andD-Emeasurements. A comparison of the properties of the composites prepared with untreated and mechanically activated particles revealed that there is a significant difference in their performances at low filler concentrations (<20 wt%). Introduction of the surface modified ceramic particles into PVDF matrix led to an increase of the dielectric constant without affecting significantly the electrical breakdown strength. In contrast, when as received BT particles were used a filler, both dielectric constants and breakdown strengths of the composite films were lower than the corresponding values observed for the pure PVDF. At higher concentrations, however, the influence of pre-treatment of the filler on the effective electrical properties becomes less significant. The obtained results were discussed in terms of the pronounced crystallization of polarβandγcrystal phases of PVDF in the presence of surface modified BT fillers, which is confirmed by Raman spectroscopy.

Funder

Ministry of Science, Technological Development and Innovation of the Republic of Serbia

US Department of Energy/National Nuclear Security Administration

US National Science Foundation

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3