Abstract
Abstract
Optomechanical wavelength up-conversion based on optical force and core–shell scattering effects are used to control light coupling between two waveguides. This system consists of two parallel optical waveguides with 20 μm lengths suspended on a silica substrate embedded with Ag/Si/SiO2 core–shell nanoparticles. By mid-IR plane wave illumination with different intensities and different wavelengths on nanoparticles, scattering would increase and result in an improvement in attractive gradient optical force exerted on waveguides. Via bending waveguides toward each other, visible light propagating in the first waveguide would couple to another. PDMS as a polymer is used to reduce the required power for bending waveguides. Results reveal that when waveguides’ gap equilibrium is 400 nm and wavelengths of control and probe lights are 4.5 μm and 0.45 μm respectively, about 10.75 mW μm−2 power is needed to bend waveguides for total coupling of light between waveguides. The efficiency of the coupled waveguides system is %43.
Subject
Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献