A two-layer Timepix3 stack for improved charged particle tracking and radiation field decomposition

Author:

Smolyanskiy P.ORCID,Bacak M.ORCID,Bergmann B.ORCID,Broulím P.ORCID,Burian P.ORCID,Čelko T.ORCID,Garvey D.ORCID,Gunthoti K.ORCID,Infantes F.G.,Mánek P.ORCID,Manna A.ORCID,Mráz F.ORCID,Mucciola R.ORCID,Pospíšil S.ORCID,Sitarz M.ORCID,Urban O.ORCID,Vykydal Z.ORCID,Wender S.A.ORCID

Abstract

Abstract We characterize a novel instrument designed for radiation field decomposition and particle trajectory reconstruction for application in harsh radiation environments. The device consists of two Timepix3 assemblies with 500 µm thick silicon sensors in a face-to-face geometry. These detectors are interleaved with a set of neutron converters: 6LiF for thermal neutrons, polyethylene (PE) for fast neutrons above 1 MeV, and PE with an additional aluminum recoil proton filter for neutrons above ∼4 MeV. Application of the coincidence and anticoincidence technique together with pattern recognition allows improved separation of charged and neutral particles, their discrimination against γ-rays and assessment of the overall directionality of the fast neutron field. The instrument's charged particle tracking and separation capabilities were studied at the Danish Center for Particle Therapy (DCPT), the Proton Synchrotron, and Super Proton Synchrotron with protons (50–240 MeV), pions (1–10 GeV/c and 180 GeV/c). After developing temporal and spatial coincidence assignment methodology, we determine the relative amount of coincident detections as a function of the impact angle, present the device's impact angle resolving power (both in coincidence and anticoicidence channels). The detector response to neutrons was studied at the Czech Metrology Institute (CMI), at n_ToF and the Los Alamos Neutron Science Center (LANSCE), covering the entire spectrum from thermal up to 600 MeV. The measured tracks were assigned to their corresponding neutron energy by application of the time of flight technique. We present the achieved neutron detection efficiency as a function of neutron kinetic energy and demonstrate how the ratio of events found below the different converters can be used to assess the hardness of the neutron spectrum. As an application, we determine the neutron content within a PMMA phantom just behind the Bragg-peak during clinical irradiation condition with protons of 160 MeV.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3