Performance evaluation of lead-monoxide dosimeter with parylene coating for quality assurance of brachytherapy devices

Author:

Yang S.W.,Han M.J.,Jung J.H.,Mun C.W,Cho H.L.,Park S.K.

Abstract

Abstract The source position of irradiation is identified using a method that uses rulers and films for quality assurance (QA) in brachytherapy. However, this method involves a high probability of errors, because the scales are checked using the naked eye, and QA is indirectly performed using photographs. Lead monoxide (PbO) is widely used as a semiconductor dosimeter, because it is a photoconductor that generates electrons in response to electromagnetic waves. Moreover, PbO has excellent sensitivity to reflected rays, owing to its high atomic number (Z Pb: 82, Z O: 8) and density (ρPbO: 9.53 g/cm3). We applied PbO to a dosimeter for QA in a brachytherapy device and attempted to increase the signal stability with a parylene coating for performance improvement. Subsequently, a comparative analysis was performed with a PbO dosimeter that was not coated with parylene to determine whether the fabricated dosimeter is applicable as a dosimeter for QA of the brachytherapy device, by analyzing the reproducibility, linearity, percentage interval distance (PID), and angular dependence in the 192Ir source used for brachytherapy. The RSD of the non-parylene PbO dosimeter was 0.85%, and the RSD of the parylene PbO dosimeter was 0.40% in the reproducibility results. In the linearity evaluation results, the R 2 value of the non-parylene PbO dosimeter was 0.9996, and that of the parylene PbO dosimeter was 0.9997 In the PID evaluation results, the difference in the intensity distribution measured according to the distance due to the dose was attenuated at the coated parylene in the case of the parylene PbO dosimeter. Therefore, adjustments using correction coefficients are required for suitable performance. In the angular dependence evaluation results, the parylene PbO dosimeter had 3.44% less angular dependence than the non-parylene dosimeter at an angle of 45°. The parylene-coated PbO dosimeter showed better performance than the non-parylene-coated PbO dosimeter in terms of the reproducibility, linearity, and angular dependence. Therefore, it is considered that the parylene-coated PbO dosimeter can be implemented for QA of brachytherapy devices.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3