Development of high-level applications for High Energy Photon Source booster

Author:

Peng YuemeiORCID,Ji Daheng,Ji Hongfei,Li Nan,Lu Xiaohan,Tian Saike,Wei Yuanyuan,Xu Haisheng,Zhao Yaliang,Jiao Yi,Li Jingyi

Abstract

Abstract The High Energy Photon Source (HEPS), is the first fourth-generation storage ring light source being built in the suburb of Beijing, China. The storage ring was designed with the emittance lower than 60 pm.rad with a circumference of 1.36 km and beam energy of 6 GeV. Its injector contains a 500 MeV S-band Linac and a 454 m booster which was designed as an accumulator at the extraction energy. In the energy ramping control design of HEPS booster, the ramping process was programed to be able to stop and stay at any energy between the injection energy and the extraction energy. This feature enables us to conduct energy-dependent machine studies and ramping curve optimization. The beam commissioning of HEPS Linac finished in June, 2023. And the beam commissioning of booster started in the end of July, 2023. In November 17, main target values proposed in the preliminary design report has been reached. The high-level applications (HLAs) are essential tools for beam commissioning. The development of HLAs, which are based on the framework named Python accelerator physics application set (Pyapas), started in the end of 2021. The HEPS physics team spent more than one year to develop and test the HLAs to meet the requirements of beam commissioning of the booster. Thanks to the modular design, the principle based on physical quantities, and the ability of running simulation models online from the Pyapas, the development efficiency and reliability of the HLAs have been greatly improved. In particular, the principle based on physical quantities allows us to control the beam more intuitively.

Publisher

IOP Publishing

Reference24 articles.

1. The HEPS project;Jiao;J. Synchrotron Radiat.,2018

2. Modification and optimization of the storage ring lattice of the High Energy Photon Source;Jiao;Radiat. Detect. Technol. Methods,2020

3. A Low-Emittance Lattice for the ESRF;Farvacque,2013

4. Optimal dipole-field profiles for emittance reduction in storage rings;Wang;Phys. Rev. ST Accel. Beams,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3