Novel indium phosphide charged particle detector characterization with a 120 GeV proton beam

Author:

Kim SungjoonORCID,Jadhav Manoj B.ORCID,Berry VikasORCID,Metcalfe Jessica E.ORCID,Sumant Anirudha V.ORCID

Abstract

Abstract Thin film detectors which incorporate semiconductor materials other than silicon have the potential to build upon their unique material properties and offer advantages such as faster response times, operation at room temperature, and radiation hardness. To explore the possibility, promising candidate materials were selected, and particle tracking detectors were fabricated. An indium phosphide detector with a metal-intrinsic-metal structure has been fabricated for particle tracking. The detector was tested using radioactive sources and a high energy proton beam at Fermi National Accelerator Laboratory. In addition to its simplistic design and fabrication process, the indium phosphide particle detector showed a very fast response time of hundreds of picoseconds for the 120 GeV protons, which are comparable to the ultra-fast silicon detectors. This fast-timing response is attributed to the high electron mobility of indium phosphide. Such material properties can be leveraged to build novel detectors with superlative performance.

Publisher

IOP Publishing

Reference22 articles.

1. Thin film charged particle detectors;Kim;JINST,2023

2. Potential of Thin Films for use in Charged Particle Tracking Detectors;Metcalfe,2014

3. Electron and iron concentration in semi-insulating indium phosphide;Zeisse;Journal of Crystal Growth,1983

4. Indium phosphide;Bliss,2019

5. Quantitative study of the contribution of deep and shallow levels to the compensation mechanisms in annealed InP;Hirt;Journal of Applied Physics,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3