Performance of neutron-irradiated 4H-silicon carbide diodes subjected to alpha radiation

Author:

Gaggl P.,Gsponer A.,Thalmeier R.,Waid S.,Pellegrini G.,Godignon P.,Rafí J.M.,Bergauer T.

Abstract

Abstract The unique electrical and material properties of 4H-silicon-carbide (4H-SiC) make it a promising candidate material for high rate particle detectors. In contrast to the ubiquitously used silicon (Si), 4H-SiC offers a higher carrier saturation velocity and larger breakdown voltage, enabling a high intrinsic time resolution and mitigating pile-up effects. Additionally, as radiation hardness requirements grow more demanding in the context of future high luminosity high energy physics experiments, wide-bandgap materials such as 4H-SiC could offer better performance due to low dark currents and higher atomic displacement thresholds. In this work, the detector performance of 50 µm thick 4H-SiC p-in-n planar pad sensors was investigated at room temperature, using an 241Am alpha source at reverse biases of up to 1100 V. Samples subjected to neutron irradiation with fluences of up to 1 × 1016 neq/cm2 were included in the study in order to quantify the radiation hardness properties of 4H-SiC. A calibration of the absolute number of collected charges was performed using a GATE simulation. The obtained results are compared to previously performed UV transient current technique (TCT) studies. Samples exhibit a drop in charge collection efficiency (CCE) with increasing irradiation fluence, partially compensated at high reverse bias voltages far above full depletion voltage. At fluences of 5 × 1014 neq/cm2 and 1 × 1015 neq/cm2, CCEs of 64 % and 51 % are obtained, decreasing to 15 % at 5 × 1015 neq/cm2. A plateau of the collected charges is observed in accordance with the depletion of the volume the alpha particles penetrate for an unirradiated reference detector. For the neutron-irradiated samples, such a plateau only becomes apparent at higher reverse bias, roughly 600 V and 900 V for neutron fluences of 5 × 1014 neq/cm2 and 1 × 1015 neq/cm2. For the highest investigated fluence, CCE behaves almost linearly with increasing reverse bias. Compared to UV-TCT measurements, the reverse bias required to deplete a sensitive volume covering full energy deposition is lower, due to the small penetration depth of the alpha particles. At the highest reverse bias, the measured CCE values agree well with earlier UV-TCT studies, with discrepancies between 1% and 5%.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Measurement of the electron–hole pair creation energy in a 4H-SiC p-n diode;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2024-07

2. Pulsed RF knock-out extraction: a potential enabler for FLASH hadrontherapy in the Bragg peak;Physics in Medicine & Biology;2024-06-07

3. Position-resolved charge collection of silicon carbide detectors with an epitaxially-grown graphene layer;Scientific Reports;2024-05-06

4. Investigation of the Performance Degradation of 4H-SiC Neutron Detectors Using MCNP and TCAD;IEEE Sensors Journal;2024-02-15

5. Detector development for particle physics;e+i Elektrotechnik und Informationstechnik;2024-01-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3