Intrinsic timing properties of ideal 3D-trench silicon sensor with fast front-end electronics

Author:

Cossu Gian Matteo,Brundu Davide,Lai Adriano

Abstract

Abstract This paper describes the fundamental timing properties of a single-pixel sensor for charged particle detection based on the 3D-trench silicon structure. We derive the results both analytically and numerically by considering a simple ideal sensor and the corresponding fast front-end electronics in two different case scenarios: ideal integrator and real fast electronics (trans-impedance amplifier). The particular shape of the Time of Arrival (TOA) distribution is examined and the relation between the time resolution and the spread of intrinsic charge collection time is discussed, by varying electronics parameters and discrimination thresholds. The results are obtained with and without simulated electronics noise. We show that the 3D-trench sensors are characterized by a synchronous region, i.e. a portion of the active volume which leads to the same TOA values when charged particles cross it. The synchronous region size is dependent on the front-end electronics and discrimination threshold, and the phenomenon represents an intrinsic physical effect that leads to the excellent time resolution of these sensors. Moreover, we show that the TOA distribution is characterized by an intrinsic asymmetry, due to the 3D geometry only, that becomes negligible in case of significant electronics jitter.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

Reference21 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3