A facility for radiation hardness studies based on a medical cyclotron

Author:

Anders J.,Braccini S.,Carzaniga T.S.,Casolaro P.,Chatterjee M.,Dellepiane G.,Franconi L.,Halser L.,Ilg A.,Mateu I.,Meloni F.,Merlassino C.,Miucci A.,Müller R.,Rimoldi M.,Weber M.

Abstract

Abstract The development of instrumentation for operation in high-radiation environments represents a challenge in various research fields, particularly in particle physics experiments and space missions, and drives an ever-increasing demand for irradiation facilities dedicated to radiation hardness studies. Depending on the application, different needs arise in terms of particle type, energy and dose rate. In this article, we present a versatile installation based on a medical cyclotron located at the Bern University Hospital (Inselspital), which is used as a controlled 18-MeV proton source. This accelerator is used for daily production of medical radioisotopes, as well as for multidisciplinary research, thanks to a 6.5-meter long beam transfer line that terminates in an independent bunker, dedicated only to scientific activities. The facility offers a wide range of proton fluxes, due to an adjustable beam current from approximately 10 pA to the micro-ampere range, together with a series of steering and focusing magnets along the beamline that allow for the beam spot to be focused down to a few mm^2. The beamline can be instrumented with a variety of beam monitoring detectors, collimators, and beam current measurement devices to precisely control the irradiation conditions. The facility also hosts a well equipped laboratory dedicated to the characterisation of samples after irradiation. An experimental validation of the irradiation setup, with proton fluxes ranging from 5×10^9 cm^-2s^-1 to 4×10^11 cm^-2s^-1, is reported.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Amorphous silicon detectors for proton beam monitoring in FLASH radiotherapy;Radiation Measurements;2024-09

2. A high-resolution large-area detector for quality assurance in radiotherapy;Scientific Reports;2024-05-09

3. Application of non-destructive analysis methods in TENMAK-PAF;Applied Radiation and Isotopes;2024-04

4. Fiber-coupled GAGG scintillators for real-time small-field dosimetry in FLASH proton therapy;2023 IEEE Nuclear Science Symposium, Medical Imaging Conference and International Symposium on Room-Temperature Semiconductor Detectors (NSS MIC RTSD);2023-11-04

5. Novel solid target and irradiation methods for theranostic radioisotope production at the Bern medical cyclotron;EPJ Web of Conferences;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3