Design of high-light-collection-efficiency optical fiber for germanium detectors immersed in liquid argon

Author:

Yan Yulu,Zhang Lei,Liu Yu,Lin Shin-Ted,Zhu Jingjun,Liu Shukui,Fang Changhao,Tang Changjian,Xing Haoyang

Abstract

Abstract The implementation of Slicon Photon-Multipliers (SiPMs) wave-length shifting (WLS) fibers light response system in liquid argon (LAr) is a promising technology for suppressing background in rare event experiments. Moreover, it is particularly relevant for experiments that utilize high-purity germanium (HPGe) detectors directly operated in LAr, such as the direct detection of dark matter and neutrinoless double beta decay. In this work, we exhibit a designed WLS fiber for the LAr detector, verify the feasibility of the manufacturing technology, and simulation research about its light collection performance. The novel fiber incorporates two materials, styrene and 1,1,4,4-tetraphenyl-1,3-butadiene (TPB). The pre-experiments proved that the fiber has good WLS and light-conducting properties for ultraviolet light. In addition, the effect of different light collection methods on detection efficiency was assessed by Geant4 simulation. Our results show that adding optical fibers can significantly increase light collection efficiency. Compared with the design of TPB coating with commercial fiber, the new structure of WLS fiber can improve the light collection efficiency by 50%. The simulation results indicate that the new fiber structure can enhance the light collection efficiency of the LAr detection system, thereby improving the anti-coincidence system's performance in rare event experiments.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3