Abstract
Abstract
Gas Electron Multiplier (GEM) detectors are crucial for enabling high-resolution X-ray polarization of astrophysical sources when coupled to custom pixel readout ASIC in Gas Pixel Detectors (GPD), as in the Imaging X-ray Polarimetry Explorer (IXPE), the Polarlight cubesat pathfinder and the PFA telescope onboard the future large enhanced X-ray Timing and Polarimetry (eXTP) Chinese mission. The R&D efforts of the IXPE collaboration have resulted in mature GPD technology. However, limitations in the classical wet-etch or laser-drilled fabrication process of GEMs motivated our exploration of alternative methods. This work focuses on investigating a plasma-based etching approach for fabricating GEM patterns at Fondazione Bruno Kessler (FBK). The objective is to improve the aspect ratio of the GEM holes, to mitigate the charging of the GEM dielectric which generates rate-dependent gain changes. Unlike the traditional wet-etch process, Reactive Ion Etching (RIE) enables more vertical etching profiles and thus better aspect ratios. Moreover, the RIE process promises to overcome non-uniformities in the GEM hole patterns which are believed to cause systemic effects in the azimuthal response of GPDs equipped with either laser-drilled or wet-etch GEMs. We present a GEM geometry with 20 μm in diameter and 50 μm pitch, accompanied by extensive characterization (SEM and PFIB) of the structural features and aspect ratios. The collaboration with INFN Pisa and Turin enabled us to compare the electrical properties of these detectors and test their performance in their use as electron multipliers in GPDs. Although this R&D work is in its initial stages, it holds promise for enhancing the sensitivity of the IXPE mission in X-ray polarimetry measurements through GEM pattern with more vertical hole profiles. The outcomes of this study have the potential to advance the current technological platforms and improve the capabilities of future space-based X-ray polarimetry missions.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Evolution of flexible PCBs in particle detection: From ALICE ITS1 to future frontiers in microfabrication for ALPIDE chip integration;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2024-12