OuroborosBEM: a fast multi-GPU microscopic Monte Carlo simulation for gaseous detectors and charged particle dynamics

Author:

Quéméner G.ORCID,Salvador S.ORCID

Abstract

Abstract The design of gaseous detectors for accelerator, particle and nuclear physics requires simulations relying on multi-physics aspects. In fact, these simulations deal with the dynamics of a large number of charged particles interacting in a gaseous medium immersed in the electric field generated by a more or less complex assembly of electrodes and dielectric materials. We report here on a homemade software, called ouroborosbem, able to tackle the different features involved in such simulations. After solving the electrostatic problem for which a solver based on the boundary element method (BEM) has been implemented, particles are tracked and will microscopically interact with the gas medium. Dynamical effects have been included such as the electron-ion recombination process, the charging-up of the dielectric materials and other space charge effects that might alter the detector performances. These were made possible thanks to the nVidia CUDA language specifically optimised to run on Graphical Processor Units (GPUs) to minimize the computing times. Comparisons of the results obtained for parallel plate avalanche counters and GEM detectors to literature data on swarm parameters fully validate the performances of ouroborosbem. Moreover, we were able to precisely reproduce the measured gains of single and double GEM detectors as a function of the applied voltage.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

Reference41 articles.

1. Garfield, a drift chamber simulation program;Veenhof;Conf. Proc. C,1993

2. The challenge of ionisation chamber dosimetry in ultra-short pulsed high dose-rate Very High Energy Electron beams

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3