Optimization of power feedback control system for HCN interferometer on EAST Tokamak

Author:

Zhang J.B.,Liu H.Q.,Zhang Y.,Jie Y.X.,Wei X.C.,Xie J.X.,Wang S.X.,Lian H.

Abstract

Abstract The Hydrogen Cyanide (HCN) interferometer stands as an indispensable diagnostic tool, designated to measure the line-integrated electron density on the Experimental Advanced Superconducting Tokamak (EAST), thereby offering essential density feedback signals for EAST operation. The HCN laser used in the interferometer is a continuous glow discharge gas laser. However, owing to variations in external ambient temperature, the HCN laser exhibits output power instability. The current power automatic feedback control system for the HCN laser interferometer exhibits low actuator adjustment precision, thereby limiting its ability to achieve maximum output power. Moreover, the system may cause a temporary power drop to zero during adjustment, while EAST operation requires the HCN laser interferometer to maintain high power continuously. In order to solve the issues, this paper developed an innovative actuator that ingeniously amalgamates the virtues of piezoelectric ceramic and stepper motor. This novel actuator, demonstrating a broad adjustment range and high precision, is intended to replace the present one in the HCN interferometer power control system. While the stepper motor executes coarse adjustment, the piezoelectric ceramic enables precise adjustment, thus enhancing the adjustment accuracy of the automatic power control system to a sub-micrometer level and an adjustment range greater than 5 mm. Accurate determination of the regulator's adjustment direction can significantly improve the efficiency of adjustment. The slope of the laser output power peak decreases as it approaches the maximum value, and increases as it moves away from the maximum value. Therefore, this system replaces the original threshold algorithm with a slope algorithm. By correctly judging the adjustment direction, the efficiency of adjustment is improved. Furthermore, this algorithm can keep the output power stable on a power peak. There will be no instances of zero power output during the adjustment, allowing the power to remain stable above the set threshold for a long time. Currently, this system has been successfully applied to the HCN interferometer, and testing has found that the system can maintain stability for at least 16 hours. Furthermore, even when the laser output power was intentionally reduced to below the set threshold, the system was able to respond quickly and adjust the output, rapidly restoring it to above the predefined threshold. Multiple tests have shown the strong robustness of the system, indicating it meets the stringent demands of the EAST's complex environment.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3