Normalizing flows for domain adaptation when identifying Λ hyperon events

Author:

Kelleher R.ORCID,Vossen A.

Abstract

Abstract This study focuses on the application of a normalizing flow as a method of domain adaptation when classifying physics data. Normalizing flows offer a way to transform data points between two different distributions. The present study investigates a novel method of transforming latent representations of physics data to a normal distribution and then to a physics distribution again. The final distribution models a simulated distribution. After being transformed, the data can be classified by a neural network trained on labeled simulation data. The present study succeeds in training two normalizing flows that can transform between data (or simulation) and a Gaussian distribution.

Publisher

IOP Publishing

Reference10 articles.

1. The Spin Structure of the Nucleon;Aidala;Rev. Mod. Phys.,2013

2. The CLAS12 Spectrometer at Jefferson Laboratory;Burkert;Nucl. Instrum. Meth. A,2020

3. PEPSI: A Monte Carlo generator for polarized leptoproduction;Mankiewicz;Comput. Phys. Commun.,1992

4. Domain-adversarial graph neural networks for Λ hyperon identification with CLAS12;McEneaney;JINST,2023

5. Normalizing Flows: An Introduction and Review of Current Methods;Kobyzev;IEEE Trans. Pattern Anal. Machine Intell.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3