Improved modeling of in-ice particle showers for IceCube event reconstruction

Author:

Abbasi R.,Ackermann M.,Adams J.,Agarwalla S.K.,Aguilar J.A.,Ahlers M.,Alameddine J.M.,Amin N.M.,Andeen K.,Anton G.,Argüelles C.,Ashida Y.,Athanasiadou S.,Ausborm L.,Axani S.N.,Bai X.,Balagopal V. A.,Baricevic M.,Barwick S.W.,Bash S.,Basu V.,Bay R.,Beatty J.J.,Becker Tjus J.,Beise J.,Bellenghi C.,Benning C.,BenZvi S.,Berley D.,Bernardini E.,Besson D.Z.,Blaufuss E.,Blot S.,Bontempo F.,Book J.Y.,Boscolo Meneguolo C.,Böser S.,Botner O.,Böttcher J.,Braun J.,Brinson B.,Brostean-Kaiser J.,Brusa L.,Burley R.T.,Busse R.S.,Butterfield D.,Campana M.A.,Caracas I.,Carloni K.,Carpio J.,Chattopadhyay S.,Chau N.,Chen Z.,Chirkin D.,Choi S.,Clark B.A.,Coleman A.,Collin G.H.,Connolly A.,Conrad J.M.,Coppin P.,Corley R.,Correa P.,Cowen D.F.,Dave P.,De Clercq C.,DeLaunay J.J.,Delgado D.,Deng S.,Deoskar K.,Desai A.,Desiati P.,de Vries K.D.,de Wasseige G.,DeYoung T.,Diaz A.,Díaz-Vélez J.C.,Dittmer M.,Domi A.,Draper L.,Dujmovic H.,Dutta K.,DuVernois M.A.,Ehrhardt T.,Eidenschink L.,Eimer A.,Eller P.,Ellinger E.,El Mentawi S.,Elsässer D.,Engel R.,Erpenbeck H.,Evans J.,Evenson P.A.,Fan K.L.,Fang K.,Farrag K.,Fazely A.R.,Fedynitch A.,Feigl N.,Fiedlschuster S.,Finley C.,Fischer L.,Fox D.,Franckowiak A.,Fürst P.,Gallagher J.,Ganster E.,Garcia A.,Genton E.,Gerhardt L.,Ghadimi A.,Girard-Carillo C.,Glaser C.,Glüsenkamp T.,Gonzalez J.G.,Goswami S.,Granados A.,Grant D.,Gray S.J.,Gries O.,Griffin S.,Griswold S.,Groth K.M.,Günther C.,Gutjahr P.,Ha C.,Haack C.,Hallgren A.,Halliday R.,Halve L.,Halzen F.,Hamdaoui H.,Ha Minh M.,Handt M.,Hanson K.,Hardin J.,Harnisch A.A.,Hatch P.,Haungs A.,Häußler J.,Helbing K.,Hellrung J.,Hermannsgabner J.,Heuermann L.,Heyer N.,Hickford S.,Hidvegi A.,Hill C.,Hill G.C.,Hoffman K.D.,Hori S.,Hoshina K.,Hostert M.,Hou W.,Huber T.,Hultqvist K.,Hünnefeld M.,Hussain R.,Hymon K.,Ishihara A.,Iwakiri W.,Jacquart M.,Janik O.,Jansson M.,Japaridze G.S.,Jeong M.,Jin M.,Jones B.J.P.,Kamp N.,Kang D.,Kang W.,Kang X.,Kappes A.,Kappesser D.,Kardum L.,Karg T.,Karl M.,Karle A.,Katil A.,Katz U.,Kauer M.,Kelley J.L.,Khanal M.,Khatee Zathul A.,Kheirandish A.,Kiryluk J.,Klein S.R.,Kochocki A.,Koirala R.,Kolanoski H.,Kontrimas T.,Köpke L.,Kopper C.,Koskinen D.J.,Koundal P.,Kovacevich M.,Kowalski M.,Kozynets T.,Krishnamoorthi J.,Kruiswijk K.,Krupczak E.,Kumar A.,Kun E.,Kurahashi N.,Lad N.,Lagunas Gualda C.,Lamoureux M.,Larson M.J.,Latseva S.,Lauber F.,Lazar J.P.,Lee J.W.,Leonard DeHolton K.,Leszczyńska A.,Liao J.,Lincetto M.,Liubarska M.,Lohfink E.,Love C.,Lozano Mariscal C.J.,Lu L.,Lucarelli F.,Luszczak W.,Lyu Y.,Madsen J.,Magnus E.,Mahn K.B.M.,Makino Y.,Manao E.,Mancina S.,Marie Sainte W.,Mariş I.C.,Marka S.,Marka Z.,Marsee M.,Martinez-Soler I.,Maruyama R.,Mayhew F.,McElroy T.,McNally F.,Mead J.V.,Meagher K.,Mechbal S.,Medina A.,Meier M.,Merckx Y.,Merten L.,Micallef J.,Mitchell J.,Montaruli T.,Moore R.W.,Morii Y.,Morse R.,Moulai M.,Mukherjee T.,Naab R.,Nagai R.,Nakos M.,Naumann U.,Necker J.,Negi A.,Neumann M.,Niederhausen H.,Nisa M.U.,Noell A.,Novikov A.,Nowicki S.C.,Obertacke Pollmann A.,O'Dell V.,Oeyen B.,Olivas A.,Orsoe R.,Osborn J.,O'Sullivan E.,Pandya H.,Park N.,Parker G.K.,Paudel E.N.,Paul L.,Pérez de los Heros C.,Pernice T.,Peterson J.,Philippen S.,Pizzuto A.,Plum M.,Pontén A.,Popovych Y.,Prado Rodriguez M.,Pries B.,Procter-Murphy R.,Przybylski G.T.,Raab C.,Rack-Helleis J.,Rawlins K.,Rechav Z.,Rehman A.,Reichherzer P.,Resconi E.,Reusch S.,Rhode W.,Riedel B.,Rifaie A.,Roberts E.J.,Robertson S.,Rodan S.,Roellinghoff G.,Rongen M.,Rosted A.,Rott C.,Ruhe T.,Ruohan L.,Ryckbosch D.,Safa I.,Saffer J.,Salazar-Gallegos D.,Sampathkumar P.,Sandrock A.,Santander M.,Sarkar S.,Sarkar S.,Savelberg J.,Savina P.,Schaile P.,Schaufel M.,Schieler H.,Schindler S.,Schlüter B.,Schlüter F.,Schmeisser N.,Schmidt T.,Schneider J.,Schröder F.G.,Schumacher L.,Sclafani S.,Seckel D.,Seikh M.,Seo M.,Seunarine S.,Sevle Myhr P.,Shah R.,Shefali S.,Shimizu N.,Silva M.,Skrzypek B.,Smithers B.,Snihur R.,Soedingrekso J.,Søgaard A.,Soldin D.,Soldin P.,Sommani G.,Spannfellner C.,Spiczak G.M.,Spiering C.,Stamatikos M.,Stanev T.,Stezelberger T.,Stürwald T.,Stuttard T.,Sullivan G.W.,Taboada I.,Ter-Antonyan S.,Terliuk A.,Thiesmeyer M.,Thompson W.G.,Thwaites J.,Tilav S.,Tollefson K.,Tönnis C.,Toscano S.,Tosi D.,Trettin A.,Turcotte R.,Twagirayezu J.P.,Unland Elorrieta M.A.,Upadhyay A.K.,Upshaw K.,Vaidyanathan A.,Valtonen-Mattila N.,Vandenbroucke J.,van Eijndhoven N.,Vannerom D.,van Santen J.,Vara J.,Veitch-Michaelis J.,Venugopal M.,Vereecken M.,Verpoest S.,Veske D.,Vijai A.,Walck C.,Wang A.,Weaver C.,Weigel P.,Weindl A.,Weldert J.,Wen A.Y.,Wendt C.,Werthebach J.,Weyrauch M.,Whitehorn N.,Wiebusch C.H.,Williams D.R.,Witthaus L.,Wolf A.,Wolf M.,Wrede G.,Xu X.W.,Yanez J.P.,Yildizci E.,Yoshida S.,Young R.,Yu S.,Yuan T.,Zhang Z.,Zhelnin P.,Zilberman P.,Zimmerman M.,

Abstract

Abstract The IceCube Neutrino Observatory relies on an array of photomultiplier tubes to detect Cherenkov light produced by charged particles in the South Pole ice. IceCube data analyses depend on an in-depth characterization of the glacial ice, and on novel approaches in event reconstruction that utilize fast approximations of photoelectron yields. Here, a more accurate model is derived for event reconstruction that better captures our current knowledge of ice optical properties. When evaluated on a Monte Carlo simulation set, the median angular resolution for in-ice particle showers improves by over a factor of three compared to a reconstruction based on a simplified model of the ice. The most substantial improvement is obtained when including effects of birefringence due to the polycrystalline structure of the ice. When evaluated on data classified as particle showers in the high-energy starting events sample, a significantly improved description of the events is observed.

Publisher

IOP Publishing

Reference40 articles.

1. The IceCube Neutrino Observatory: Instrumentation and Online Systems;IceCube Collaboration;JINST,2017

2. Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector;IceCube Collaboration;Science,2013

3. The IceCube high-energy starting event sample: Description and flux characterization with 7.5 years of data;IceCube Collaboration;Phys. Rev. D,2021

4. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A;IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S., INTEGRAL, Kanata, Kiso, Kapteyn, Liverpool Telescope, Subaru, Swift NuSTAR, VERITAS, VLA/17B-403 Collaboration;Science,2018

5. The IceCube Realtime Alert System;IceCube Collaboration;Astropart. Phys.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3