Investigating the impact of the universal function of the nuclear proximity potential in heavy-ion fusion cross sections

Author:

Gharaei RORCID,Sarvari E

Abstract

Abstract The fusion barriers and cross sections of 15 colliding systems with 320 ≤ Z 1 Z 2 ≤ 1512 are investigated in detail to understand the influence of the universal function of proximity potential formalism in the heavy-ion fusion mechanism. To realize this goal, we select three versions of the phenomenological proximity potentials, including Prox. 77, Zhang 2013, and Guo 2013, to calculate the nucleus–nucleus potential. The experimental fusion cross sections for the selected reactions are analyzed using the standard coupled-channel calculations, including couplings to the low-lying 2+ and 3 states in the target and projectile. The calculated results show that the universal functions of the Guo 2013 and Prox. 77 models provide the lowest and highest fusion barriers, respectively. In addition, it is found that the height of the fusion barriers is enhanced by increasing the mass number of the projectile from light to heavy ones. The highest sensitivity to the mass number of the projectile belongs to the results of Prox. 77. A discussion is also presented on the influence of the universal function on the radial behavior of the interaction potential in the allowed region for overlapping configurations. Our results reveal that the best fit to the experimental data of the fusion cross sections for the reactions involving light and medium nuclei is obtained using the universal function of the Zhang 2013 model. For the heavier systems, the results of the Guo 2013 model at sub-barrier energies provide a good description of the available data.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3