Black hole evaporation and its remnants with the generalized uncertainty principle including a linear term

Author:

Yu Bo,Long Zheng-wen

Abstract

Abstract In recent years, researchers have investigated the evaporation of Schwarzschild black holes using various forms of the generalized uncertainty principle (GUP), metric quantum correction, and non-commutative geometry, respectively. However, there are differences between the GUP correction and the other two methods in terms of describing the later stages of black hole evaporation. Furthermore, some studies argue that the GUP with a negative parameter cannot effectively correct black hole evaporation, while others contend that the positivity or negativity of the GUP parameters should not affect the correction results. Taking the above into consideration, we reconsider black hole evaporation with the generalized uncertainty principle including a linear term (LGUP), and examine the case of negative parameters. The results indicate that the evaporation behavior of both Schwarzschild black holes and Reissner–Nordström black holes, under LGUP correction, is consistent with the results of metric quantum correction and non-commutative geometry. Additionally, the negative parameter LGUP can also effectively correct for black hole evaporation.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Reference56 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tidal effects based on a GUP-induced effective metric;Communications in Theoretical Physics;2024-07-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3