Side-impact collision: mechanics of obstacle negotiation in sidewinding snakes

Author:

Astley Henry CORCID,Rieser Jennifer M,Kaba Abdul,Paez Veronica M,Tomkinson Ian,Mendelson Joseph R,Goldman Daniel I

Abstract

Abstract Snakes excel at moving through cluttered environments, and heterogeneities can be used as propulsive contacts for snakes performing lateral undulation. However, sidewinding, which is often associated with sandy deserts, cuts a broad path through its environment that may increase its vulnerability to obstacles. Our prior work demonstrated that sidewinding can be represented as a pair of orthogonal body waves (vertical and horizontal) that can be independently modulated to achieve high maneuverability and incline ascent, suggesting that sidewinders may also use template modulations to negotiate obstacles. To test this hypothesis, we recorded overhead video of four sidewinder rattlesnakes (Crotalus cerastes) crossing a line of vertical pegs placed in the substrate. Snakes used three methods to traverse the obstacles: a Propagate Through behavior in which the lifted moving portion of the snake was deformed around the peg and dragged through as the snake continued sidewinding (115/160 runs), Reversal turns that reorient the snake entirely (35/160), or switching to Concertina locomotion (10/160). The Propagate Through response was only used if the anterior-most region of static contact would propagate along a path anterior to the peg, or if a new region of static contact could be formed near the head to satisfy this condition; otherwise, snakes could only use Reversal turns or switch to Concertina locomotion. Reversal turns allowed the snake to re-orient and either escape without further peg contact or re-orient into a posture amenable to using the Propagate Through response. We developed an algorithm to reproduce the Propagate Through behavior in a robophysical model using a modulation of the two-wave template. This range of behavioral strategies provides sidewinders with a versatile range of options for effectively negotiating obstacles in their natural habitat, as well as provide insights into the design and control of robotic systems dealing with heterogeneous habitats.

Funder

Division of Physics

Army Research Office

Publisher

IOP Publishing

Subject

Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology

Reference53 articles.

1. A review on locomotion robophysics: the study of movement at the intersection of robotics, soft matter and dynamical systems;Aguilar;Rep. Prog. Phys.,2016

2. Information theory as an extension of the maximum likelihood principle;Akaike,1973

3. Traversing tight tunnels—implementing an adaptive Concertina gait in a biomimetic snake robot;Astley,2018

4. Effects of perch diameter and incline on the kinematics, performance and modes of arboreal locomotion of corn snakes (Elaphe guttata);Astley;J. Exp. Biol.,2007

5. Arboreal habitat structure affects the performance and modes of locomotion of corn snakes (Elaphe guttata);Astley;J. Exp. Zool. A,2009

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3