Light absorption enhancement and radiation hardening for triple junction solar cell through bioinspired nanostructures

Author:

Vasileiou ThomasORCID,Llorens José M,Buencuerpo Jerónimo,Ripalda José MORCID,Izzo DarioORCID,Summerer Leopold

Abstract

Abstract Multi-junction solar cells constitute the main source of power for space applications. However, exposure of solar cells to the space radiation environment significantly degrades their performance across the mission lifetime. Here, we seek to improve the radiation hardness of the triple junction solar cell, GaInP/Ga(In)As/Ge, by decreasing the thickness of the more sensitive middle junction. Thin junctions facilitate the collection of minority carriers and show slower degradation due to defects. However, thinning the junction decreases the absorption, and consequently, the expected photocurrent. To compensate for this loss, we examined two bioinspired surface patterns that exhibit anti-reflective and light-trapping properties: (a) the moth-eye structure which enables vision in poorly illuminated environments and (b) the patterns of the hard cell of a unicellular photosynthetic micro-alga, the diatoms. We parametrize and optimize the biomimetic structures, aiming to maximize the absorbed light by the solar cell while achieving significant reduction in the middle junction thickness. The density of the radiation-induced defects is independent of the junction thickness, as we demonstrate using Monte Carlo simulations, allowing the direct comparison of different combinations of middle junction thicknesses and light trapping structures. We incorporate the radiation effects into the solar cell model as a decrease in minority carrier lifetime and an increase in surface recombination velocity, and we quantify the gain in efficiency for different combinations of junction thickness and the light-trapping structure at equal radiation damage. Solar cells with thin junctions compensated by the light-trapping structures offer a promising approach to improve solar cell radiation hardness and robustness, with up to 2% higher end-of-life efficiency than the commonly used configuration at high radiation exposure.

Funder

Comunidad de Madrid

MCIU/AEI/FEDER, UE

Publisher

IOP Publishing

Subject

Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology

Reference80 articles.

1. JUNO photovoltaic power at Jupiter;Dawson,2012

2. Highest efficiency multi-junction solar cell for terrestrial and space applications;Bett,2009

3. Space solar cells—3G30 and next generation radiation hard products;Guter;E3S Web Conf.,2017

4. SCREAM: a new code for solar cell degradation prediction using the displacement damage dose approach;Messenger,2010

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3