A bioinspired fishbone continuum robot with rigid-flexible-soft coupling structure

Author:

Zhou Pan,Yao JiantaoORCID,Zhang ShuaiORCID,Wei Chunjie,Zhang Hongyu,Qi Shupeng

Abstract

Abstract Rigid-flexible-soft coupled robots are an important development direction of robotics, which face many theoretical and technical challenges in their design, manufacture, and modeling. Inspired by fishbones, we propose a novel cable-driven single-backbone continuum robot which has a compact structure, is lightweight, and has high dexterity. In contrast to the existing single-backbone continuum robots, the middle backbone of the continuum robot is serially formed by multiple cross-arranged bioinspired fishbone units. The proposed bioinspired fishbone unit, having good one-dimensional bending properties, is a special rigid-flexible-soft structure mainly made by multi-material 3D printing technology. The unique design and manufacture of the middle backbone provide the continuum robot with excellent constant curvature characteristics and reduce the coupling between different motion dimensions, laying a foundation for the continuum robot to have a more accurate theoretical model as well as regular and controllable deformation. Moreover, we build the forward and inverse kinematics model based on the geometric analysis method, and analyze its workspace. Further, the comparison between the experimental and theoretical results shows that the prediction errors of the kinematics model are within the desired 0.5 mm. Also, we establish the relation between the cable driving force of the bioinspired fishbone unit and its bending angle, which can provide guidance for the optimization of the continuum robot in the future. The application demos prove that the continuum robot has good dexterity and compliance, and can perform tasks such as obstacle crossing locomotion and narrow space transportation. This work provides new ideas for the bioinspired design and high-precision modeling of continuum robots.

Funder

Financial Support of National Natural Science Foundation of China

International Cooperative Research and Development Project of Intelligent Fire Fighting Robot

Publisher

IOP Publishing

Subject

Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3