Any colour you like: fish interacting with bioinspired robots unravel mechanisms promoting mixed phenotype aggregations

Author:

Romano DonatoORCID,Stefanini Cesare

Abstract

Abstract Collective behaviours in homogeneous shoals provide several benefits to conspecifics, although mixed-species aggregations have been reported to often occur. Mixed aggregations may confer several beneficial effects such as antipredator and foraging advantages. However, the mechanisms promoting phenotypically heterogeneous fish aggregations have been poorly explored so far. Herein, the neon tetra Paracheirodon innesi was selected as the ideal model organism to test the role of visible phenotypic traits in promoting fish shoaling. Robotic fish replicas of different colours, but with a morphology inspired by P. innesi, were developed to test the affiliation behaviour of neon tetra individuals towards fish replicas with different phenotypic traits. P. innesi individuals showed a decreasing preference in shoaling with the biomimetic, the blue, the red, and the grey replicas. This could be due to the greater visibility of the blue colour even in dark conditions. Furthermore, an increased reddening of the livery is often caused by physiological processes related to a nonoptimal behavioural status. The time spent in shoaling with each fish replica was strongly influenced by different ecological contexts. The longest shoaling duration was observed when a biomimetic predator was present, while the shortest shoaling duration was recorded in the presence of food. This confirms the hypothesis that heterogeneous shoals are promoted by the antipredator benefits, and reduced by competition. This study allowed us to understand basic features of the behavioural ecology favouring heterogeneous aggregations in shoaling fish, and provided a novel paradigm for biohybrid robotics.

Funder

EU

H2020 FETOPEN Project ‘Robocoenosis—ROBOts in cooperation with a bioCOENOSIS’

Publisher

IOP Publishing

Subject

Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology

Reference45 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3