Comprehensive stiffness regulation on multi-section snake robot with considering the parasite motion and friction effects

Author:

Ma NanORCID,Zhou Haiqin,Yuan Jujie,He Guangping

Abstract

Abstract Snake robots have been widely used in challenging environments, such as confined spaces. However, most existing snake robots with large length/diameter ratios have low stiffness, and this limits their accuracy and utility. To remedy this, a novel ‘macro-micro’ structure aided by a new comprehensive stiffness regulation strategy is proposed in this paper. This improves the positional accuracy when operating in deep and confined spaces. Subsequently, a comprehensive strategy for regulating the stiffness of the system is then developed, along with a kinetostatic model for error prediction. The internal friction, variation of cable stiffness as a function of tension, and their effects on the structural stiffness of the snake arm under different configurations have been incorporated into the model to increase the modelling accuracy. Finally, the proposed models were validated experimentally on a physical prototype and control system (error: 4.3% and 2.5% for straight and curved configurations, respectively). The improvement in stiffness due to the adjustment of the tension in the driving cables (i.e. average 183.4%) of the snake arm is shown.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3