Abstract
Abstract
Snake robots have been widely used in challenging environments, such as confined spaces. However, most existing snake robots with large length/diameter ratios have low stiffness, and this limits their accuracy and utility. To remedy this, a novel ‘macro-micro’ structure aided by a new comprehensive stiffness regulation strategy is proposed in this paper. This improves the positional accuracy when operating in deep and confined spaces. Subsequently, a comprehensive strategy for regulating the stiffness of the system is then developed, along with a kinetostatic model for error prediction. The internal friction, variation of cable stiffness as a function of tension, and their effects on the structural stiffness of the snake arm under different configurations have been incorporated into the model to increase the modelling accuracy. Finally, the proposed models were validated experimentally on a physical prototype and control system (error: 4.3% and 2.5% for straight and curved configurations, respectively). The improvement in stiffness due to the adjustment of the tension in the driving cables (i.e. average 183.4%) of the snake arm is shown.
Funder
National Natural Science Foundation of China
Subject
Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献