Elastodynamic model for flapping-wing micro aerial vehicle

Author:

Fang Xin,Wu JianghaoORCID,Du FengORCID

Abstract

Abstract Lightweight design is key to high efficiency and long durability of micro air vehicle (MAV), while it will inevitably reduce the stiffness of the structures and affect the motion of the mechanism. In this study, an elastodynamic model for flapping-wing MAV (FMAV) is established to unveil the effect of elastic deformation of transmission mechanism on the flapping motion. Based on kineto-elastostatic analysis, an elastodynamic model of the transmission mechanism is built, which reveals that the inertial force of the transmission mechanism for typical FMAV is much smaller than the force transmitted. Thus, the inertial force can be ignored, and analytical formula between the deformation of transmission mechanism and the flapping angle is derived. Finite element method (FEM) simulations are conducted to validate the analytical formula, and the results show that the flapping angle obtained from the analytical formula matches well with FEM simulations. The proposed elastodynamic model and analytical formula will provide theoretical guidance for designing and optimizing FMAV with desired transmission mechanism and flapping motion.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology

Reference40 articles.

1. Pitch and roll control mechanism for a hovering flapping wing MAV;Karásek;Int. J. Micro Air Vehicles,2014

2. Analysis and control of flapping flight: from biological to robotic insects;Schenato,2003

3. A review of bird-Inspired flapping wing miniature air vehicle designs;Gerdes;J. Mech. Robot.,2012

4. Flapping and flexible wings for biological and micro air vehicles;Shyy;Prog. Aerosp. Sci.,1999

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3