School formation characteristics and stimuli based modeling of tetra fish

Author:

Rahman S R,Sajjad I,Mansoor M M,Belden J,Murphy C T,Truscott T TORCID

Abstract

Abstract Self-organizing motion is an important yet inadequately understood phenomena in the field of collective behavior. For birds flocks, insect swarms, and fish schools, group behavior can provide a mechanism for defense against predators, better foraging and mating capabilities and increased hydro/aerodynamic efficiency in long-distance migration events. Although collective motion has received much scientific attention, more work is required to model and understand the mechanisms responsible for school initiation and formation, and information transfer within these groups. Here we investigate schooling of black tetra (Gymnocorymbus ternetzi) fish triggered by startle stimuli in the form of approaching objects. High-speed video and tagging techniques were used to track the school and individual members. We then measured several variables including reaction times, group formation shapes, fish velocity, group density, and leadership within the group. These data reveal three things: (1) information propagates through the group as a wave, indicating that each fish is not reacting individually to the stimulus, (2) the time taken for information to transfer across the group is independent of group density, and (3) information propagates across large groups faster than would be expected if the fish were simply responding to the motion of their nearest neighbor. A model was then built wherein simulated fish have a simple ‘stimuli/escape’ vector based on a hypothetical field of vision. The model was used to simulate a group of individual fish with initial conditions, size, and stimuli similar to the biological experiments. The model revealed similar behavior to the biological experiments and provide insights into the observed patterns, response times, and wave speeds.

Funder

Office of Naval Research

Publisher

IOP Publishing

Subject

Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology

Reference61 articles.

1. A simulation study on the schooling mechanism in fish;Aoki;Nippon Suisan Gakkaishi,1982

2. Group hunting within the Carnivora: physiological, cognitive and environmental influences on strategy and cooperation;Bailey;Behav. Ecol. Sociobiol.,2013

3. Tagging tadpoles: retention rates and impacts of visible implant elastomer (VIE) tags from the larval to adult amphibian stages;Bainbridge;Herpetol. J.,2015

4. Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study;Ballerini;Proc. Natl Acad. Sci.,2008

5. Reaction time and stimulus frequency in prey localization in the surface-feeding fish Aplocheilus lineatus;Bleckmann;J. Comp. Physiol.,1980

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3