Complex systems approaches for Earth system data analysis

Author:

Boers NiklasORCID,Kurths Jürgen,Marwan Norbert

Abstract

Abstract Complex systems can, to a first approximation, be characterized by the fact that their dynamics emerging at the macroscopic level cannot be easily explained from the microscopic dynamics of the individual constituents of the system. This property of complex systems can be identified in virtually all natural systems surrounding us, but also in many social, economic, and technological systems. The defining characteristics of complex systems imply that their dynamics can often only be captured from the analysis of simulated or observed data. Here, we summarize recent advances in nonlinear data analysis of both simulated and real-world complex systems, with a focus on recurrence analysis for the investigation of individual or small sets of time series, and complex networks for the analysis of possibly very large, spatiotemporal datasets. We review and explain the recent success of these two key concepts of complexity science with an emphasis on applications for the analysis of geoscientific and in particular (palaeo-) climate data. In particular, we present several prominent examples where challenging problems in Earth system and climate science have been successfully addressed using recurrence analysis and complex networks. We outline several open questions for future lines of research in the direction of data-based complex system analysis, again with a focus on applications in the Earth sciences, and suggest possible combinations with suitable machine learning approaches. Beyond Earth system analysis, these methods have proven valuable also in many other scientific disciplines, such as neuroscience, physiology, epidemics, or engineering.

Funder

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

Volkswagen Foundation

Horizon 2020 Framework Programme

Publisher

IOP Publishing

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Information Systems

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3