Unveiling correlated two-dimensional topological insulators through fermionic tensor network states—classification, edge theories and variational wavefunctions

Author:

Xu ChaoORCID,Ma Yixin,Jiang ShenghanORCID

Abstract

Abstract The study of topological band insulators has revealed fascinating phases characterized by band topology indices and anomalous boundary modes protected by global symmetries. In strongly correlated systems, where the traditional notion of electronic bands becomes obsolete, it has been established that topological insulator phases persist as stable phases, separate from the trivial insulators. However, due to the inability to express the ground states of such systems as Slater determinants, the formulation of generic variational wave functions for numerical simulations is highly desirable. In this paper, we tackle this challenge for two-dimensional topological insulators by developing a comprehensive framework for fermionic tensor network states. Starting from simple assumptions, we obtain possible sets of tensor equations for any given symmetry group, capturing consistent relations governing symmetry transformation rules on tensor legs. We then examine the connection between these tensor equations and non-chiral topological insulators by constructing edge theories and extracting quantum anomaly data from each set of tensor equations. By exhaustively exploring all possible sets of equations, we achieve a systematic classification of non-chiral topological insulator phases. Imposing the solutions of a given set of equations onto local tensors, we obtain generic variational wavefunctions for the corresponding topological insulator phases. Our methodology provides an important step toward simulating topological insulators in strongly correlated systems. We discuss the limitations and potential generalizations of our results, paving the way for further advancements in this field.

Funder

National Natural Science Foundation of China

Ministry of Science and Technology of the People’s Republic of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3