Glacial isostatic adjustment: physical models and observational constraints

Author:

Peltier W Richard,Wu Patrick Pak-CheukORCID,Argus Donald F,Li TanghuaORCID,Velay-Vitow JesseORCID

Abstract

Abstract By far the most prescient insights into the interior structure of the planet have been provided on the basis of elastic wave seismology. Analysis of the travel times of shear or compression wave phases excited by individual earthquakes, or through analysis of the elastic gravitational free oscillations that individual earthquakes of sufficiently large magnitude may excite, has been the central focus of Earth physics research for more than a century. Unfortunately, data provide no information that is directly relevant to understanding the solid state ‘flow’ of the polycrystalline outer ‘mantle’ shell of the planet that is involved in the thermally driven convective circulation that is responsible for powering the ‘drift’ of the continents and which controls the rate of planetary cooling on long timescales. For this reason, there has been an increasing focus on the understanding of physical phenomenology that is unambiguously associated with mantle flow processes that are distinct from those directly associated with the convective circulation itself. This paper reviews the past many decades of work that has been invested in understanding the most important of such processes, namely that which has come to be referred to as ‘glacial isostatic adjustment’ (GIA). This process concerns the response of the planet to the loading and unloading of the high latitude continents by the massive accumulations of glacial ice that have occurred with almost metronomic regularity over the most recent million years of Earth history. Forced by the impact of gravitational n-body effects on the geometry of Earth’s orbit around the Sun through the impact upon the terrestrial regime of received solar insolation, these surface mass loads on the continents have left indelible records of their occurrence in the ‘Earth system’ consisting of the oceans, continents, and the great polar ice sheets on Greenland and Antarctica themselves. Although this ice-age phenomenology has been clearly recognized since early in the last century, it was for over 50 years considered to be no more than an interesting curiosity, the understanding of which remained on the periphery of the theoretical physics of the Earth. This was the case in part because no globally applicable theory was available that could be applied to rigorously interpret the observations. Equally important to understanding the scientific lethargy that held back the understanding of this phenomenon involving mantle flow processes was the lack of appreciation of the wide range of observations that were in fact related to GIA physics. This paper is devoted to a review of the global theories of the GIA process that have since been developed as a means of interpreting the extensive variety of observations that are now recognized as being involved in the response of the planet to the loading and unloading of its surface by glacial ice. The paper will also provide examples of the further analyses of Earth physics and climate related processes that applications of the modern theoretical structures have enabled.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3