Abstract
Abstract
Cluster states are key resources for measurement-based quantum information processing. Photonic cluster and graph states, in particular, play indispensable roles in quantum network and quantum metrology. We demonstrate a semiconductor quantum dot based device in which the confined hole spin acts as a needle in a quantum knitting machine producing continuously and deterministically at sub-Gigahertz repetition rate single indistinguishable photons which are all polarization entangled to each other and to the spin in a one dimensional cluster state. By projecting two nonadjacent photons onto circular polarization bases we disentangle the spin from the photons emitted in between. This way we demonstrate a novel way for producing deterministic and continuous all-photonic cluster states. We use polarization tomography on four sequentially detected photons to demonstrate and to directly quantify the robustness of the cluster’s entanglement and the determinism in its photon generation.
Funder
European Research Council
German Israeli Research Cooperation
Israeli Science Foundation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献