Homotopy, symmetry, and non-Hermitian band topology

Author:

Yang KangORCID,Li Zhi,König J Lukas KORCID,Rødland LukasORCID,Stålhammar MarcusORCID,Bergholtz Emil JORCID

Abstract

Abstract Non-Hermitian matrices are ubiquitous in the description of nature ranging from classical dissipative systems, including optical, electrical, and mechanical metamaterials, to scattering of waves and open quantum many-body systems. Seminal line-gap and point-gap classifications of non-Hermitian systems using K-theory have deepened the understanding of many physical phenomena. However, ample systems remain beyond this description; reference points and lines do not in general distinguish whether multiple non-Hermitian bands exhibit intriguing exceptional points, spectral braids and crossings. To address this we consider two different notions: non-Hermitian band gaps and separation gaps that crucially encompass a broad class of multi-band scenarios, enabling the description of generic band structures with symmetries. With these concepts, we provide a unified and comprehensive classification of both gapped and nodal systems in the presence of physically relevant parity-time ( PT ) and pseudo-Hermitian symmetries using homotopy theory. This uncovers new stable topology stemming from both eigenvalues and wave functions, and remarkably also implies distinct fragile topological phases. In particular, we reveal different Abelian and non-Abelian phases in PT -symmetric systems, described by frame and braid topology. The corresponding invariants are robust to symmetry-preserving perturbations that do not induce (exceptional) degeneracy, and they also predict the deformation rules of nodal phases. We further demonstrate that spontaneous PT symmetry breaking is captured by Chern–Euler and Chern–Stiefel–Whitney descriptions, a fingerprint of unprecedented non-Hermitian topology previously overlooked. These results open the door for theoretical and experimental exploration of a rich variety of novel topological phenomena in a wide range of physical platforms.

Funder

ANR-DFG project

Knut och Alice Wallenbergs Stiftelse

Swedish Research Council

Wallenberg Academy Fellows

Publisher

IOP Publishing

Reference182 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3