Point-of-care AI-assisted stepwise ultrasound pneumothorax diagnosis

Author:

Kim KyungsangORCID,Macruz Fabiola,Wu DufanORCID,Bridge Christopher,McKinney SuzannahORCID,Al Saud Ahad Alhassan,Sharaf Elshaimaa,Pely Adam,Danset Paul,Duffy Tom,Dhatt Davin,Buch Varun,Liteplo Andrew,Li Quanzheng

Abstract

Abstract Objective. Ultrasound is extensively utilized as a convenient and cost-effective method in emergency situations. Unfortunately, the limited availability of skilled clinicians in emergency hinders the wider adoption of point-of-care ultrasound. To overcome this challenge, this paper aims to aid less experienced healthcare providers in emergency lung ultrasound scans. Approach. To assist healthcare providers, it is important to have a comprehensive model that can automatically guide the entire process of lung ultrasound based on the clinician’s workflow. In this paper, we propose a framework for diagnosing pneumothorax using artificial intelligence (AI) assistance. Specifically, the proposed framework for lung ultrasound scan follows the steps taken by skilled physicians. It begins with finding the appropriate transducer position on the chest to locate the pleural line accurately in B-mode. The next step involves acquiring temporal M-mode data to determine the presence of lung sliding, a crucial indicator for pneumothorax. To mimic the sequential process of clinicians, two DL models were developed. The first model focuses on quality assurance (QA) and regression of the pleural line region-of-interest, while the second model classifies lung sliding. To achieve the inference on a mobile device, a size of EfficientNet-Lite0 model was further reduced to have fewer than 3 million parameters. Main results. The results showed that both the QA and lung sliding classification models achieved over 95% in area under the receiver operating characteristic (AUC), while the ROI performance reached 89% in the dice similarity coefficient. The entire stepwise pipeline was simulated using retrospective data, yielding an AUC of 89%. Significance. The step-wise AI framework for the pneumothorax diagnosis with QA offers an intelligible guide for each clinical workflow, which achieved significantly high precision and real-time inferences.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3