Essential parameters needed for a U-Net-based segmentation of individual bones on planning CT images in the head and neck region using limited datasets for radiotherapy application

Author:

Yawson Ama KatseenaORCID,Walter AlexandraORCID,Wolf NoraORCID,Klüter SebastianORCID,Hoegen Philip,Adeberg Sebastian,Debus Jürgen,Frank Martin,Jäkel OliverORCID,Giske KristinaORCID

Abstract

Abstract Objective. The field of radiotherapy is highly marked by the lack of datasets even with the availability of public datasets. Our study uses a very limited dataset to provide insights on essential parameters needed to automatically and accurately segment individual bones on planning CT images of head and neck cancer patients. Approach. The study was conducted using 30 planning CT images of real patients acquired from 5 different cohorts. 15 cases from 4 cohorts were randomly selected as training and validation datasets while the remaining were used as test datasets. Four experimental sets were formulated to explore parameters such as background patch reduction, class-dependent augmentation and incorporation of a weight map on the loss function. Main results. Our best experimental scenario resulted in a mean Dice score of 0.93 ± 0.06 for other bones (skull, mandible, scapulae, clavicles, humeri and hyoid), 0.93 ± 0.02 for ribs and 0.88 ± 0.03 for vertebrae on 7 test cases from the same cohorts as the training datasets. We compared our proposed solution approach to a retrained nnU-Net and obtained comparable results for vertebral bones while outperforming in the correct identification of the left and right instances of ribs, scapulae, humeri and clavicles. Furthermore, we evaluated the generalization capability of our proposed model on a new cohort and the mean Dice score yielded 0.96 ± 0.10 for other bones, 0.95 ± 0.07 for ribs and 0.81 ± 0.19 for vertebrae on 8 test cases. Significance. With these insights, we are challenging the utilization of an automatic and accurate bone segmentation tool into the clinical routine of radiotherapy despite the limited training datasets.

Funder

ARTEMIS project

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3