Improving coronary ultrafast Doppler angiography using fractional moving blood volume and motion-adaptive ensemble length

Author:

Zhang NORCID,Nguyen M BORCID,Mertens L,Barron D J,Villemain O,Baranger JORCID

Abstract

Abstract Coronary microperfusion assessment is a key parameter for understanding cardiac function. Currently, coronary ultrafast Doppler angiography is the only non-invasive clinical imaging technique able to assess coronary microcirculation quantitatively in humans. In this study, we propose to use fractional moving blood volume (FMBV), proportional to the red blood cell concentration, as a metric for perfusion. FMBV compares the power Doppler in a region of interest (ROI) inside the myocardium to the power Doppler of a reference area in the heart chamber, fully filled with blood. This normalization gives then relative values of the ROI blood filling. However, due to the impact of ultrasound attenuation and elevation focus on power Doppler values, the reference area and the ROI need to be at the same depth to allow this normalization. This condition is rarely satisfied in vivo due to the cardiac anatomy. Hereby, we propose to locally compensate the attenuation between the ROI and the reference, by measuring the attenuation law on a phantom. We quantified the efficiency of this approach by comparing FMBV with and without compensation on a flow phantom. Compensated FMBV was able to estimate the ground-truth FMBV with less than 5% variation. This method was then adapted to the in vivo case of myocardial perfusion imaging during heart surgery on human neonates. The translation from in vitro to in vivo required an additional clutter filtering step to ensure that blood signals could be correctly identified in the fast-moving myocardium. We applied the singular value decomposition filter on temporal sliding windows whose lengths were a function of myocardium motion. This motion-adaptive temporal sliding window approach was able to improve blood and tissue separation in terms of contrast-to-noise ratio, as compared to well-established constant-length sliding window approaches. Therefore, compensated FMBV and singular value decomposition assisted with motion-adaptive temporal sliding windows improves the quantification of blood volume in coronary ultrafast Doppler angiography.

Funder

SickKids Labatt Family Heart Center

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3