A novel hybrid 3D dose reconstruction approach for pre-treatment verification of intensity modulated proton therapy plans

Author:

Arjunan Manikandan,Sharma Dayananda Shamurailatpam,Kaushik SuryakantORCID,Krishnan Ganapathy,Patro Kartikeshwar C,Padanthaiyil Noufal Mandala,Rajesh T,Jalali R

Abstract

Abstract Aim. A novel hybrid three-dimensional (3D) dose reconstruction method, based on planar dose measured at a single shallower depth, was developed for use as patient-specific quality assurance (PSQA) of intensity modulated proton therapy (IMPT) plans. The accuracy, robustness and sensitivity of the presented method were validated for multiple IMPT plans of varying complexities. Methods and Materials. An in-house MATLAB program was developed to reconstruct 3D dose distribution from the planar dose (GyRBE) measured at 3 g cm−2 depth in water or solid phantom using a MatriXX PT ion chamber array. The presented method was validated extensively for 11 single-field optimization (SFO) and multi-field optimization (MFO) plans on Proteus Plus. A total of 47 reconstructed planar doses at different depths were compared against the corresponding RayStation treatment planning system (TPS) and MatriXX PT measurement using a gamma passing rate (γ%) evaluated for 3%/3 mm. The robustness of the reconstruction method with respect to depth, energy layers, field dimensions and complexities in the spot intensity map (SIM) were analysed and compared against the standard PSQA. The sensitivity of the reconstruction method was tested for plans with intentional errors. Results. The presented reconstruction method showed excellent agreement (mean γ% > 98%) and robustness with both TPS-calculated and measured dose planes at all depths (2.97–30 g cm−2), energy layers (82.1–225.5 MeV), field dimensions, target volume (17.7–1000 cm3) and SIMs from both SFO and MFO plans. In comparison to the overall mean ± SD γ% from standard PSQA, the reconstruction method showed reductions in mean γ% within 1% for both standard cubes and clinical plans. The reconstruction method was sensitive enough to detect intentional spot positional errors in a selected energy layer of a plan. Conclusion. The presented hybrid reconstruction method is sufficiently accurate, robust and sensitive to estimate planar dose at any user-defined depth. It simplifies the measurement setup and eliminates multiple depth measurements.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3