A GPU-accelerated framework for rapid estimation of scanner-specific scatter in CT for virtual imaging trials

Author:

Sharma Shobhit,Abadi EhsanORCID,Kapadia Anuj,Segars W Paul,Samei Ehsan

Abstract

Abstract Virtual imaging trials (VITs), defined as the process of conducting clinical imaging trials using computer simulations, offer a time- and cost-effective alternative to traditional imaging trials for CT. The clinical potential of VITs hinges on the realism of simulations modeling the image acquisition process, where the accurate scanner-specific simulation of scatter in a time-feasible manner poses a particular challenge. To meet this need, this study proposes, develops, and validates a rapid scatter estimation framework, based on GPU-accelerated Monte Carlo (MC) simulations and denoising methods, for estimating scatter in single source, dual-source, and photon-counting CT. A CT simulator was developed to incorporate parametric models for an anti-scatter grid and a curved energy integrating detector with an energy-dependent response. The scatter estimates from the simulator were validated using physical measurements acquired on a clinical CT system using the standard single-blocker method. The MC simulator was further extended to incorporate a pre-validated model for a PCD and an additional source-detector pair to model cross scatter in dual-source configurations. To estimate scatter with desirable levels of statistical noise using a manageable computational load, two denoising methods using a (1) convolutional neural network and an (2) optimized Gaussian filter were further deployed. The viability of this framework for clinical VITs was assessed by integrating it with a scanner-specific ray-tracer program to simulate images for an image quality (Mercury) and an anthropomorphic phantom (XCAT). The simulated scatter-to-primary ratios agreed with physical measurements within 4.4% ± 10.8% across all projection angles and kVs. The differences of ∼121 HU between images with and without scatter, signifying the importance of scatter for simulating clinical images. The denoising methods preserved the magnitudes and trends observed in the reference scatter distributions, with an averaged rRMSE value of 0.91 and 0.97 for the two methods, respectively. The execution time of ∼30 s for simulating scatter in a single projection with a desirable level of statistical noise indicates a major improvement in performance, making our tool an eligible candidate for conducting extensive VITs spanning multiple patients and scan protocols.

Funder

National Institutes of Health

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference35 articles.

1. Development of a scanner-specific simulation framework for photon-counting computed tomography;Abadi;Biomed. Phys. Eng. Express,2019a

2. Virtual clinical trials in medical imaging: a review;Abadi;J. Med. Imaging,2020

3. DukeSim: a realistic, rapid, and scanner-specific simulation framework in computed tomography;Abadi;IEEE Trans. Med. Imaging,2018a

4. Modeling ‘textured’ bones in virtual human phantoms;Abadi;IEEE. Trans. Radiat. Plasma Med Sci.,2019b

5. Modeling lung architecture in the XCAT series of phantoms: physiologically based airways, arteries and veins;Abadi;IEEE Trans. Med. Imaging,2018b

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3