Gradient coil and radiofrequency induced heating of orthopaedic implants in MRI: influencing factors

Author:

Wooldridge JORCID,Arduino AORCID,Zilberti LORCID,Zanovello UORCID,Chiampi MORCID,Clementi V,Bottauscio OORCID

Abstract

Abstract Patients with implanted orthopaedic devices represent a growing number of subjects undergoing magnetic resonance imaging (MRI) scans each year. MRI safety labelling is required for all implants under the EU Medical Device Regulations to ensure regulatory compliance, with each device assessed through standardised testing procedures. In this paper, we employ parametric studies to assess a range of clinically relevant factors that cause tissue heating, performing simulations with both radiofrequency (RF) and gradient coil (GC) switching fields, the latter of which is often overlooked in the literature. A series of ‘worst-case’ scenarios for both types of excitation field is discussed. In the case of GC fields, large volume implants and large plate areas with the field orientated perpendicular to the plane cause the highest heating levels, along with sequences with high rates of field switching. Implant heating from RF fields is driven primarily from the ‘antenna effect’, with thin, linear implants of resonant length resulting in the highest temperature rises. In this work, we show that simplifications may be made to the field sequence and in some cases the device geometry without significantly compromising the accuracy of the simulation results, enabling the possibility for generic estimates of the implant heating for orthopaedic device manufacturers and opportunities to simplify the safety compliance process.

Funder

Horizon 2020 Framework Programme

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3