Abstract
Abstract
Objective. Intensity-modulated radiotherapy (IMRT) is widely used in clinical radiotherapy, treating varying malignancies with conformal doses. As the test field for clinical translation, preclinical small animal experiments need to mimic the human radiotherapy condition, including IMRT. However, small animal IMRT is a systematic challenge due to the lack of corresponding hardware and software for miniaturized targets. Approach. The sparse orthogonal collimators (SOC) based on the direct rectangular aperture optimization (RAO) substantially simplified the hardware for miniaturization. This study investigates and evaluates a significantly improved RAO algorithm for complex mouse irradiation using SOC. Because the Kronecker product representation of the rectangular aperture is the main limitation of the computational performance, we reformulated matrix multiplication in the data fidelity term using multiplication with small matrices instead of the Kronecker product of the dose loading matrices. Solving the optimization problem was further accelerated using the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). Main results. Four mouse cases, including a liver, a brain tumor, a concave U-target, and a complex total marrow irradiation (TMI) case, were included in this study with manually delineated targets and OARs. Seven coplanar-field SOC IMRT (sIMRT) plans were compared with idealistic fluence map based IMRT (iIMRT) plans. For the first three cases with simpler and smaller targets, the differences between sIMRT plans and iIMRT plans in the planning target volumes (PTV) statistics are within 1%. For the TMI case, the sIMRT plans are superior in reducing hot spots (also termed D
max) of PTV, kidneys, lungs, heart, and bowel by 20.5%, 31.5%, 24.67%, 20.13%, and 17.78%, respectively. On average, in four cases in this study, the sIMRT plan conformity is comparable to that of the iIMRT’s with lightly increased R50 and Integral Dose by 2.23% and 2.78%. Significance. The significantly improved sIMRT optimization method allows fast plan creation in under 1 min for smaller targets and makes complex TMI planning feasible while achieving comparable dosimetry to idealistic IMRT with fluence map optimization.
Funder
National Institutes of Health
Subject
Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献