Imaging of 99mTc-DMSA and 18F-FDG in humans using a Si/CdTe Compton camera

Author:

Nakano Takashi,Sakai MakotoORCID,Torikai KotaORCID,Suzuki Yoshiyuki,Takeda Shin’ichiro,Noda Shin-ei,Yamaguchi MitsutakaORCID,Nagao Yuto,Kikuchi Mikiko,Odaka Hirokazu,Kamiya Tomihiro,Kawachi NaokiORCID,Watanabe Shin,Arakawa Kazuo,Takahashi Tadayuki

Abstract

Abstract The Compton camera can simultaneously acquire images of multiple isotopes injected in a body; therefore, it has the potential to introduce a new subfield in the field of biomedical imaging applications. The objective of this study is to assess the ability of a prototype semiconductor-based silicon/cadmium telluride (Si/CdTe) Compton camera to simultaneously image the distributions of technetium (99mTc)-dimercaptosuccinic acid (DMSA) (141 keV emission) and 18F-fluorodeoxyglucose (FDG) (511 keV emission) injected into a human volunteer. 99mTc-DMSA and 18F-FDG were injected intravenously into a 25-year-old male volunteer. The distributions of 99mTc-DMSA and 18F-FDG were simultaneously made visible by setting a specified energy window for each radioisotope. The images of these radiopharmaceuticals acquired using the prototype Compton camera were superimposed onto computed tomography images for reference. The reconstructed image showed that 99mTc-DMSA had accumulated in both kidneys, which is consistent with the well-known diagnostic distribution determined by clinical imaging via single-photon emission computed tomography. In the 18F-FDG image, there is broad distribution around the liver and kidneys, which was expected based on routine clinical positron emission tomography imaging. The current study demonstrated for the first time that the Si/CdTe Compton camera was capable of simultaneously imaging the distributions of two radiopharmaceuticals, 99mTc-DMSA and 18F-FDG, in a human body. These results suggest that the Si/CdTe Compton camera has the potential to become a novel modality for nuclear medical diagnoses enabling multi-probe simultaneous tracking.

Funder

Grants-in-Aid

Publisher

IOP Publishing

Subject

Radiology Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3