Brain tumor magnetic resonance image segmentation by a multiscale contextual attention module combined with a deep residual UNet (MCA-ResUNet)

Author:

Cao Tianyi,Wang Guanglei,Ren Lili,Li Yan,Wang Hongrui

Abstract

Abstract Background and Objective. Automatic segmentation of MRI brain tumor area is a key step in the diagnosis and treatment of brain tumor. In recent years, the improved network based on UNet encoding and decoding structure has been widely used in brain tumor segmentation. However, due to continuous convolution and pooling operations, some spatial context information in existing networks will be discontinuous or even missing. It will affect the segmentation accuracy of the model. Therefore, the method proposed in this paper is to alleviate the lack of spatial context information and improve the accuracy of the model. Approach. This paper proposes a context attention module (multiscale contextual attention) to capture and filter out high-level features with spatial context information, which solves the problem of context information loss in feature extraction. The channel attention mechanism is introduced into the decoding structure to realize the fusion of high-level features and low-level features. The standard convolution block in the encoding and decoding structure is replaced by the pre-activated residual block to optimize the network training and improve the network performance. Results. This paper uses two public data sets (BraTs 2017 and BraTs 2019) to evaluate and verify the proposed method. Experimental results show that the proposed method can effectively alleviate the lack of spatial context information, and the segmentation performance is better than other existing methods. Significance. The method improves the segmentation performance of the model. It will assist doctors in making accurate diagnosis and provide reference basis for tumor resection. As a result, the proposed method will reduce the operation risk of patients and the postoperative recurrence rate.

Funder

Hebei Provincial Natural Science Fund Key Project

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3