Bifurcation detection in intravascular optical coherence tomography using vision transformer based deep learning

Author:

Zhu Rongyang,Li Qingrui,Ding ZhenyangORCID,Liu Kun,Lin Qiutong,Yu Yin,Li Yuanyao,Zhou Shanshan,Kuang Hao,Jiang JunfengORCID,Liu Tiegen

Abstract

Abstract Objective. Bifurcation detection in intravascular optical coherence tomography (IVOCT) images plays a significant role in guiding optimal revascularization strategies for percutaneous coronary intervention (PCI). We propose a bifurcation detection method using vision transformer (ViT) based deep learning in IVOCT. Approach. Instead of relying on lumen segmentation, the proposed method identifies the bifurcation image using a ViT-based classification model and then estimate bifurcation ostium points by a ViT-based landmark detection model. Main results. By processing 8640 clinical images, the Accuracy and F1-score of bifurcation identification by the proposed ViT-based model are 2.54% and 16.08% higher than that of traditional non-deep learning methods, are similar to the best performance of convolutional neural networks (CNNs) based methods, respectively. The ostium distance error of the ViT-based model is 0.305 mm, which is reduced 68.5% compared with the traditional non-deep learning method and reduced 24.81% compared with the best performance of CNNs based methods. The results also show that the proposed ViT-based method achieves the highest success detection rate are 11.3% and 29.2% higher than the non-deep learning method, and 4.6% and 2.5% higher than the best performance of CNNs based methods when the distance section is 0.1 and 0.2 mm, respectively. Significance. The proposed ViT-based method enhances the performance of bifurcation detection of IVOCT images, which maintains a high correlation and consistency between the automatic detection results and the expert manual results. It is of great significance in guiding the selection of PCI treatment strategies.

Funder

Key Technologies Research and Development Program of China

National Natural Science Foundation of China

Special Technical Support Project of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3