Low frequency conductivity reconstruction based on a single current injection via MREIT

Author:

Song Yizhuang,Sajib Saurav Z K,Wang Haiyang,Kwon Hyeuknam,Chauhan MunishORCID,Keun Seo Jin,Sadleir RosalindORCID

Abstract

Abstract Conventional magnetic resonance electrical impedance tomography (MREIT) reconstruction methods require administration of two linearly independent currents via at least two electrode pairs. This requires long scanning times and inhibits coordination of MREIT measurements with electrical neuromodulation strategies. We sought to develop an isotropic conductivity reconstruction algorithm in MREIT based on a single current injection, both to decrease scanning time by a factor of two and enable MREIT measurements to be conveniently adapted to general transcranial- or implanted-electrode neurostimulation protocols. In this work, we propose and demonstrate an iterative algorithm that extends previously published MREIT work using two-current administration approaches. The proposed algorithm is a single-current adaptation of the harmonic B z algorithm. Forward modeling of electric potentials is used to capture changes of conductivity along current directions that would normally be invisible using data from a single-current administration. Computational and experimental results show that the reconstruction algorithm is capable of reconstructing isotropic conductivity images that agree well in terms of L 2 error and structural similarity with exact conductivity distributions or two-current-based MREIT reconstructions. We conclude that it is possible to reconstruct high quality electrical conductivity images using MREIT techniques and one current injection only.

Funder

National Natural Science Foundation of China

Shandong Provincial Outstanding Youth Fund

National Institute of Mental Health

National Research Foundation of Korea

China Postdoctoral Science Foundation

National Institute of Neurological Disorders and Stroke

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3