Magnetic resonance biomarker assessment software (MR-BIAS): an automated open-source tool for the ISMRM/NIST system phantom

Author:

Korte James CORCID,Chin Zachary,Carr MadelineORCID,Holloway LoisORCID,Franich Rick

Abstract

Abstract Objective. To provide an open-source software for repeatable and efficient quantification of T 1 and T 2 relaxation times with the ISMRM/NIST system phantom. Quantitative magnetic resonance imaging (qMRI) biomarkers have the potential to improve disease detection, staging and monitoring of treatment response. Reference objects, such as the system phantom, play a major role in translating qMRI methods into the clinic. The currently available open-source software for ISMRM/NIST system phantom analysis, Phantom Viewer (PV), includes manual steps that are subject to variability. Approach. We developed the Magnetic Resonance BIomarker Assessment Software (MR-BIAS) to automatically extract system phantom relaxation times. The inter-observer variability (IOV) and time efficiency of MR-BIAS and PV was observed in six volunteers analysing three phantom datasets. The IOV was measured with the coefficient of variation (CV) of percent bias (%bias) in T 1 and T 2 with respect to NMR reference values. The accuracy of MR-BIAS was compared to a custom script from a published study of twelve phantom datasets. This included comparison of overall bias and %bias for variable inversion recovery (T 1 VIR), variable flip angle (T 1 VFA) and multiple spin-echo (T 2 MSE) relaxation models. Main results. MR-BIAS had a lower mean CV with T 1 VIR (0.03%) and T 2 MSE (0.05%) in comparison to PV with T 1 VIR (1.28%) and T 2 MSE (4.55%). The mean analysis duration was 9.7 times faster for MR-BIAS (0.8 min) than PV (7.6 min). There was no statistically significant difference in the overall bias, or the %bias for the majority of ROIs, as calculated by MR-BIAS or the custom script for all models. Significance. MR-BIAS has demonstrated repeatable and efficient analysis of the ISMRM/NIST system phantom, with comparable accuracy to previous studies. The software is freely available to the MRI community, providing a framework to automate required analysis tasks, with the flexibility to explore open questions and accelerate biomarker research.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3