Deep learning-based dose map prediction for high-dose-rate brachytherapy

Author:

Li ZhenORCID,Yang Zhenyu,Lu Jiayu,Zhu Qingyuan,Wang Yanxiao,Zhao Mengli,Li Zhaobin,Fu Jie

Abstract

Abstract Background. Creating a clinically acceptable plan in the time-sensitive clinic workflow of brachytherapy is challenging. Deep learning-based dose prediction techniques have been reported as promising solutions with high efficiency and accuracy. However, current dose prediction studies mainly target EBRT which are inappropriate for brachytherapy, the model designed specifically for brachytherapy has not yet well-established. Purpose. To predict dose distribution in brachytherapy using a novel Squeeze and Excitation Attention Net (SE_AN) model. Method. We hypothesized the tracks of 192Ir inside applicators are essential for brachytherapy dose prediction. To emphasize the applicator contribution, a novel SE module was integrated into a Cascaded UNet to recalibrate informative features and suppress less useful ones. The Cascaded UNet consists of two stacked UNets, with the first designed to predict coarse dose distribution and the second added for fine-tuning 250 cases including all typical clinical applicators were studied, including vaginal, tandem and ovoid, multi-channel, and free needle applicators. The developed SE_AN was subsequently compared to the classic UNet and classic Cascaded UNet (without SE module) models. The model performance was evaluated by comparing the predicted dose against the clinically approved plans using mean absolute error (MAE) of DVH metrics, including D 2cc and D 90%. Results. The MAEs of DVH metrics demonstrated that SE_AN accurately predicted the dose with 0.37 ± 0.25 difference for HRCTV D 90%, 0.23 ± 0.14 difference for bladder D 2cc, and 0.28 ± 0.20 difference for rectum D 2cc. In comparison studies, UNet achieved 0.34 ± 0.24 for HRCTV, 0.25 ± 0.20 for bladder, 0.25 ± 0.21 for rectum, and Cascaded UNet achieved 0.42 ± 0.31 for HRCTV, 0.24 ± 0.19 for bladder, 0.23 ± 0.19 for rectum. Conclusion. We successfully developed a method specifically for 3D brachytherapy dose prediction. Our model demonstrated comparable performance to clinical plans generated by experienced dosimetrists. The developed technique is expected to improve the standardization and quality control of brachytherapy treatment planning.

Funder

Shanghai Sixth People’s Hospital

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3