Magnetic modeling of actively shielded rotating MRI magnets in the presence of environmental steel

Author:

Whelan BrendanORCID,Leghissa Martino,Amrein Philipp,Zaitsev Maxim,Heinrich Bernhard,Fahrig Rebecca,Rohdjess Heiko

Abstract

Abstract Rotating MRI systems could enable novel integrated medical devices such as MRI-Linacs, MRI-xray-angiography systems, and MRI-proton therapy systems. This work aimed to investigate the feasibility of rotating actively shielded superconducting MRI magnets in the presence of environmental steel—in particular, construction steel in the floor of the installation site. Two magnets were investigated: a 1.0 T split bore magnet, and a 1.5 T closed bore magnet. Each magnet was scaled to emulate field strengths of 0.5, 1.0, and 1.5 T. Finite Element Modeling was used to simulate these magnets in the presence of a 3 × 4 m steel plate located 1250 mm or 1400 mm below the isocenter. There are two possible rotation directions: around the longitudinal (z) axis or around the transverse (x) axis. Each model was solved for rotation angles between 0 and 360° in 30° intervals around each of these axes. For each simulation, a 300 mm DSV was extracted and decomposed into spherical harmonics. For the closed-bore magnet, total induced perturbation for the zero degree rotation angle was 223, 432, and 562 μT peak-to-peak (pk–pk) for the 0.5, 1.0, and 1.5 T models respectively (steel at 1250 mm). For the split-bore magnet, the same numbers were 1477, 16747, and 1766 μT. The substantially higher perturbation for the split-bore magnet can be traced to its larger fringe field. For rotation around the z-axis, total perturbation does not change as a function of angle but is exchanged between different harmonics. For rotation around the x-axis, total perturbation is different at each rotation angle. For the closed bore magnet, maximum perturbations occurred for a 90° rotation around the transverse axis. For the split-bore magnet, the opposite was observed, with the same 90° rotation yielding total perturbation lower than the conventional position. In all cases, at least 95% of the total perturbation was composed of 1st and 2nd order harmonics. The presence of environmental steel poses a major challenge to the realization of an actively shielded rotating superconducting MRI system, requiring some novel form of shimming. Possible shimming strategies are discussed at length.

Funder

EIT health

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3