Two-dimensional oxygen-diffusion modelling for FLASH proton therapy with pencil beam scanning—Impact of diffusive tissue properties, dose, dose rate and scan patterns

Author:

Diepeveen Maarten H,Lathouwers Danny,José Santo Rodrigo,Hoogeman Mischa S,Habraken Steven J M

Abstract

Abstract Objective. Oxygen depletion is generally believed to play an important role in the FLASH effect—a differential reduction of the radiosensitivity of healthy tissues, relative to that of the tumour under ultra-high dose-rate (UHDR) irradiation conditions. In proton therapy (PT) with pencil-beam scanning (PBS), the deposition of dose, and, hence, the degree of (radiolytic) oxygen depletion varies both spatially and temporally. Therefore, the resulting oxygen concentration and the healthy-tissue sparing effect through radiation-induced hypoxia varies both spatially and temporally as well. Approach. We propose and numerically solve a physical oxygen diffusion model to study these effects and their dependence on tissue parameters and the scan pattern in pencil-beam delivery. Since current clinical FLASH PT (FLASH-PT) is based on 250 MeV shoot-through (transmission) beams, for which dose and dose rate (DR) hardly vary with depth compared to the variation transverse to the beam axis, we focus on the two-dimensional case. We numerically integrate the model to obtain the oxygen concentration in each voxel as a function of time and extract voxel-based and spatially and temporarily integrated metrics for oxygen (FLASH) enhanced dose. Furthermore, we evaluate the impact on oxygen enhancement of standard pencil-beam delivery patterns and patterns that were optimised on dose-rate. Our model can contribute to the identification of tissue properties and pencil-beam delivery parameters that are critical for FLASH-PT and it may be used for the optimisation of FLASH-PT treatment plans and their delivery. Main results. (i) the diffusive properties of oxygen are critical for the steady state concentration and therefore the FLASH effect, even more so in two dimensions when compared to one dimension. (ii) The FLASH effect through oxygen depletion depends primarily on dose and less on other parameters. (iii) At a fixed fraction dose there is a slight dependence on DR. (iv) Scan patterns optimised on DR slightly increase the oxygen induced FLASH effect. Significance. To our best knowledge, this is the first study assessing the impact of scan-pattern optimization (SPO) in FLASH-PT with PBS on a biological FLASH model. While the observed impact of SPO is relatively small, a larger effect is expected for larger target volumes. A better understanding of the FLASH effect and the role of oxygen (depletion) therein is essential for the further development of FLASH-PT with PBS, and SPO.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3