Author:
Nie Xingyu,Rimner Andreas,Li Guang
Abstract
Abstract
Purpose. Current magnetic resonance imaging (MRI) guided radiotherapy (MRgRT) applies sagittal/coronal 2D-cine to monitor major tumor motions, however, the beam eye’s view (BEV) with volumetric tumor projection would be the best measure for radiation beam conformality, independent of tumor through-plane motion. The goal is to assess the feasibility, accuracy, and performance of the BEV approach. Methods. Beam-specific BEV 2D-cine with volume-projected tumor contours were simulated to establish a 2D/3D tumor match against a tumor-motion library based on multi-breath time-resolved (TR) 4DMRI images. Two BEV-library-matching methods were developed: (1) fast screening with tumor center-of-mass (∆COM), in-plane area ratio, and DICE similarity, and finalizing with the highest DICE score and (2) DICE screening for top-3 candidates and finalizing with rigid registration. A 4D-XCAT digital phantom and 8 lung-cancer patients were used for assessment. For each patient, 3 sets of 40 s TR-4DMRI were acquired at 2 Hz and 6 representative BEV were created with the isocenter set at tumor COM in mid-respiration. One TR-4DMRI set (40 × 2 = 80-images) was used to simulate BEV 2D-cine and the other two (160-images) were used to create a library. The matching result was validated against the ground truth within the test set. Using a leave-one-out strategy, the success rate, accuracy, and speed of tumor matching were assessed for volume-projected tumors over 11520 time-points (=8patients•3sets•80images•6BEVs). Results. Volume-projected tumor contour area on the 6 BEVs varies by 60% ± 8% and
%
A
V
I
(in-plane/volume-projected) varies by 82% ± 9%. The
%
A
V
I
changes with tumor shape, orientation, and through-plane motion. Method-1 produces 96% matching success (ΔCOM = 0.7 ± 0.2 mm,
%
A
V
V
=1.01 ± 0.02, Dice=0.92 ± 0.02) with the computational time of 15 ± 1 ms/match, while method-2 produces 94% ± 1% success (ΔCOM = 0.2 ± 0.1 mm,
%
A
V
V
=1.00 ± 0.01, Dice = 0.94 ± 0.02) with 223 ± 13 ms/match. Conclusion. This study has demonstrated the feasibility, accuracy, and benefits of BEV 2D-cine imaging with tumor-volume projection, allowing real-time tumor motion monitoring and beam conformality checking. Further clinical evaluation is necessary before MRgRT applications.
Funder
National Cancer Institute
Subject
Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献