How can machine learning help in understanding the impact of climate change on crop yields?

Author:

Sidhu Balsher SinghORCID,Mehrabi ZiaORCID,Ramankutty NavinORCID,Kandlikar MilindORCID

Abstract

Abstract Ordinary least squares linear regression (LR) has long been a popular choice among researchers interested in using historical data for estimating crop yield response to climate change. Today, the rapidly growing field of machine learning (ML) offers a wide range of advanced statistical tools that are increasingly being used for more accurate estimates of this relationship. This study compares LR to a popular ML technique called boosted regression trees (BRTs). We find that BRTs provide a significantly better prediction accuracy compared to various LR specifications, including those fitting quadratic and piece-wise linear functions. BRTs are also able to identify break points where the relationship between climate and yield undergoes significant shifts (for example, increasing yields with precipitation followed by a plateauing of the relationship beyond a certain point). Tests we performed with synthetically simulated climate and crop yield data showed that BRTs can automatically account for not only spatial variation in climate–yield relationships, but also interactions between different variables that affect crop yields. We then used both statistical techniques to estimate the influence of historical climate change on rice, wheat, and pearl millet in India. BRTs predicted a considerably smaller negative impact compared to LR. This may be an artifact of BRTs conflating time and climate variables, signaling a potential weakness of models with excessively flexible functional forms for inferring climate impacts on agriculture. Our findings thus suggest caution while interpreting the results from single-model analyses, especially in regions with highly varied climate and agricultural practices.

Funder

UBC Four Year Doctoral Fellowship

NSERC Discovery Grant

NSERC Vanier Canada Graduate Scholarship

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3