Controls on the relative melt rates of debris-covered glacier surfaces

Author:

Miles E SORCID,Steiner J FORCID,Buri PORCID,Immerzeel W WORCID,Pellicciotti FORCID

Abstract

Abstract Supraglacial debris covers 7% of mountain glacier area globally and generally reduces glacier surface melt. Enhanced energy absorption at ice cliffs and supraglacial ponds scattered across the debris surface leads these features to contribute disproportionately to glacier-wide ablation. However, the degree to which cliffs and ponds actually increase melt rates remains unclear, as these features have only been studied in a detailed manner for selected locations, almost exclusively in High Mountain Asia. In this study we model the surface energy balance for debris-covered ice, ice cliffs, and supraglacial ponds with a set of automatic weather station records representing the global prevalence of debris-covered glacier ice. We generate 5000 random sets of values for physical parameters using probability distributions derived from literature, which we use to investigate relative melt rates and to isolate the melt responses of debris, cliffs and ponds to the site-specific meteorological forcing. Modelled sub-debris melt rates are primarily controlled by debris thickness and thermal conductivity. At a reference thickness of 0.1 m, sub-debris melt rates vary considerably, differing by up to a factor of four between sites, mainly attributable to air temperature differences. We find that melt rates for ice cliffs are consistently 2–3× the melt rate for clean glacier ice, but this melt enhancement decays with increasing clean ice melt rates. Energy absorption at supraglacial ponds is dominated by latent heat exchange and is therefore highly sensitive to wind speed and relative humidity, but is generally less than for clean ice. Our results provide reference melt enhancement factors for melt modelling of debris-covered glacier sites, globally, while highlighting the need for direct measurement of debris-covered glacier surface characteristics, physical parameters, and local meteorological conditions at a variety of sites around the world.

Funder

H2020 European Research Council

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3