Author:
Tian Biao,Ding Minghu,Putero Davide,Li Chuanjin,Zhang Dongqi,Tang Jie,Zheng Xiangdong,Bian Lingen,Xiao Cunde
Abstract
Abstract
With the support of the Chinese National Antarctic Research Expedition, near-surface ozone (O3) was continuously monitored at Zhongshan Station (ZOS) (69°22′12″ S, 76°21′49″ E, 18.5 m above sea level) in East Antarctica from 2008 to 2020. The seasonal and diurnal variability of near-surface O3 at ZOS were investigated. O3 enhancement events (OEEs) were frequently observed in the warm season (OEEs in January accounted for 23.0% of all OEEs). The OEEs at ZOS were related to the photochemical reaction processes under the influences of O3 and solar radiation in the stratosphere and synoptic-scale air mass transport from coastal areas (Princess Elizabeth Land, Wilkes Land, and Queen Mary Land), as evidenced by the recorded wind speed, solar shortwave irradiance, and total column ozone data and the computed potential source contribution function and concentration-weighted trajectory models. The results computed by the tool Stratosphere-to-Troposphere Exchange Flux indicated that stratosphere-to-troposphere transport had no direct impact on OEEs at ZOS. Therefore, synoptic-scale air mass transport is the main cause of OEEs in Antarctica, which is consistent with previous studies. Unlike OEEs at inland Antarctic stations, which are mainly affected by air mass transport from inland plateaus, OEEs at ZOS, a coastal station, are mainly affected by air mass transport from coastal land in East Antarctica.
Funder
Strategic Priority Research Program of Chinese Academy of Sciences
Basic Fund of the Chinese Academy of Meteorological Sciences
National Natural Science Foundation of China
Subject
Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献